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Dynamics of a curved flame propagating in a tube is investigated by means of two-dimensional numerical
simulations. The complete system of hydrodynamical equations including thermal conduction, viscosity, equa-
tion of chemical kinetics, and fuel diffusion is solved with the ideally adiabatic and slippery boundary condi-
tions at the tube walls. It is found that only a planar flame can propagate in a narrow tube of width smaller than
a half of the cutoff wavelength determined from the linear theory of the hydrodynamic instability of a flame
front. In a wider tube, stationary curved flames are obtained, which propagate with the velocities larger than the
corresponding velocity of a planar flame. The velocity of a curved flame front is studied as a function of the
tube width and the expansion coefficient of the fuel. The influence of viscosity on the velocity of a curved
flame front is found to be negligible. The configuration of a curved flame propagating upwards in a gravita-
tional field is also investigated. It is shown that gravity leads to an additional increase of the flame velocity due
to the effect of rising bubbles of light burning products. The analytical formulas for the velocity of a flame
front are proposed for the cases of both zero and nonzero gravity.@S1063-651X~96!10010-6#

PACS number~s!: PACS 47.20.2k, 82.40.Py

I. INTRODUCTION

The problem of flame dynamics in tubes is one of the
most fundamental problems in combustion theory. The theo-
retical model of the flames in tubes reproduces the main
features of a common burning configuration in industrial
conditions, such as, for example, the combustion process in
gas turbines of aircrafts. Besides, a flame front propagating
in a tube represents a typical situation in combustion experi-
ments@1–4#. As was observed experimentally, a flame front
in a tube propagates rather seldom as a planar stationary
front. Usually the flame acquires a curved shape@3,4# and
sometimes transition to a turbulent regime of propagation
happens@2#, which is accompanied by considerable amplifi-
cation of the flame velocity. While the observed transition to
the turbulent regime may be sometimes accounted for by the
interaction of the flow and rough tube walls@2#, the curved
shape of a flame in tubes is a more common phenomenon.
The curved shape of the front appears even for flames propa-
gating in tubes with very smooth and adiabatic walls and it
requires another explanation. A flame front may become
spontaneously curved because of the hydrodynamic instabil-
ity first discussed by Landau and Darrieus@1,5,6#, which is
the main reason for curved shapes of the flame fronts ob-
served in many experiments.

The Landau-Darrieus~LD! instability is inherent to all
flames in gaseous mixtures since the instability is related to
the gas expansion in exothermal reactions. On the linear
stage of the instability the perturbation amplitude grows ex-
ponentially with the growth rates depending on the pertur-
bation wave numberk52p/l. For a simple case, when the

evolution of the flame front is not complicated by the
thermal-diffusive instability, the instability growth rate has
the form

s5Gufk~12klc/2p!, ~1!

whereuf is the normal velocity of a planar flame,lc is the
cutoff wavelength, and the coefficientG depends upon the
ratio of the fuel density and the density of the burning prod-
uctsQ5r f /rb.1,

G5
Q

Q11
~AQ1121/Q21!. ~2!

Perturbations of a wavelength shorter than the cutoff wave-
length lc are stabilized by thermal conduction. The cutoff
wavelength is proportional to the flame thicknessL and it
exceeds essentially the flame thickness. Typically for flames
in gas mixtures one haslc'20L. For the case of the Lewis
number equal to unity~equal coefficients of thermal diffusiv-
ity and fuel diffusion! and a large activation energy of the
reaction,E/RTb..1 (Tb being the temperature of the burnt
matter! the cutoff wavelength may be estimated by the ana-
lytical formula @7–10#

lc5
pL~Q21!

GAQ1121/Q
S 11Q lnQ

Q1112G

~Q21!2 D . ~3!

For the case of moderate values of the activation energy
E/RTb>1 the cutoff wavelength can be calculated using the
method proposed in@10#.
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Development of the LD instability causes an increase of
the flame front surface which in turn leads to the acceleration
of the flame. However, there is a mechanism of nonlinear
stabilization preventing infinite acceleration of flames in
tubes, as was pointed out in@11#. If a flame propagates in a
tube of moderate width comparable to the cutoff wavelength,
then the growth of perturbations causes formation of cusps at
the flame front and leads to the configuration of the station-
ary curved flames observed experimentally in@3,4#. Such
curved flames propagate with higher velocity compared to
the planar flames. As is expected, in tubes of moderate width
a curved flame front consists of a few cells separated by
cusps@11,12#. In much wider tubes such a configuration can-
not be stable any more. If the cell size is large enough in
comparison with the cutoff wavelength, then the cellular
flame in turn becomes unstable against the LD instability of
a small scale. As a result of this secondary instability a fine
structure arises on large cells@13,14#. Further development
of the secondary LD instability is possible if the largest in-
stability length scale exceeds the cutoff wavelength by many
orders of magnitude. In this case a fractal structure develops
at the flame front which implies many cascades of small cells
imposed on large cells@15–18#.

Up to now there was mostly qualitative understanding of
the nonlinear stage of the LD instability. Theoretical analysis
of the nonlinear stage of LD instability has been restricted at
most by the investigation of flame behavior in the limit of the
small expansion coefficient,Q21,,1 @12,14,16,17,19#.
Particularly in the limit of a small expansion coefficient the
model equation for a curved flame front has been derived in
@12# and the analytical solution of this equation has been
obtained in@19#. It follows from the analytical solution@19#
that velocity of a stationary curved flame front with periodic
cellular structure depends on the cell size in a way shown in
Fig. 1. The important feature of the dependence is existence
of a maximal possible velocity of a stationary cellular flame
front. For example, this maximum is achieved for the period
of the cellular structurelm52lc which results from the fast-
est growing perturbations on the linear stage of the instability
growth. Except for the study of the specific limit of small
expansion coefficients only semiqualitative analytic esti-
mates of the velocity of a curved flame front are available
@11,13#.

The purpose of the present paper is to investigate the non-
linear stage of the LD instability by means of two-
dimensional~2D! numerical simulations of the complete sys-
tem of hydrodynamical equations and equations of chemical
kinetics. There have been several papers devoted to 2D nu-
merical simulations of LD instability of a flame front in a
laboratory or astrophysical environment, e.g.,@20–23#. Par-
ticularly, the linear stage of the LD instability of a planar
flame has been studied thoroughly in@22# by means of 2D
simulations. However, when it comes to the nonlinear stage
of the LD instability, all these papers resulted only in quali-
tative descriptions of the simulated flows. Therefore careful
quantitative investigation of the dynamics of curved flames
is necessary.

In the present paper we study propagation of a curved
flame front in a tube with ideally adiabatic and slip walls.
Such a configuration corresponds to the development of a
periodic cellular structure at a flame front as well, since the
ideal walls may be considered as the symmetry axes. In the
present paper we restrict ourselves to the case of tubes of a
moderate width compared to the cutoff wavelength. By this
restriction we concentrate our study on the development and
propagation of stationary cellular flames. One of the goals of
the present paper is to investigate the maximal velocity of a
stationary curved flame in tubes. We also consider the con-
figuration of curved upward propagating flames and study
the effect of gravity on flame dynamics. Problems of stability
of a cellular flame and development of a fractal structure will
be addressed in the forthcoming papers.

The paper is organized as follows. In Sec. II a basic set of
the equations is introduced and the problem of a flame
propagating in a tube is formulated. Section III contains a
brief description of the 2D numerical scheme. In Sec. IV
results of several tests of the numerical code for the well
known analytical solutions of flame dynamics are presented.
We found that the Zel’dovich-Frank-Kamenetski solution for
a planar stationary flame front@1# and the linear stage of the
LD instability are reproduced with a very good accuracy.
The obtained results on the dynamics of curved flames in
tubes and discussion of the results are presented in Sec. V. In
Sec. VI we present results of the numerical simulations of
upward propagation of slow flames in a tube. The analytical
formulas are obtained for the velocity of a curved stationary
flame for both cases of zero and nonzero gravity. We con-
clude in Sec. VII.

II. BASIC EQUATIONS

We solve, numerically, equations of hydrodynamics and
chemical kinetic. For the sake of simplicity a single irrevers-
ible reaction is admitted, so that the governing equations are
the following:

]

]t
r1

]

]xi
~rui !50, ~4!

]

]t
~rui !1

]

]xj
~ruiuj !1d i j P2t i j50, ~5!

FIG. 1. The scaled velocity of a stationary cellular flame vs the
inverse cell sizelc /l obtained in the limit of a small expansion
coefficientQ21!1 . The dashed lines of the curve correspond to
the unstable solutions.
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]

]t S re1
1

2
rujuj D1

]

]xi
S ruih1

1

2
ruiujuj2qi2ujt i j D50,

~6!

]

]t
~rY!1

]

]xi
S ruiY2

m

Sc

]Y

]xi
D52

rY

tR
exp~2E/RT!,

~7!

whereY is the fuel fraction,e5QY1CVT is the internal
energy,h5QY1CPT is the enthalpy,Q is the energy re-
lease in the reaction. The specific heatsCV , CP are assumed
to be constant and unaffected by reaction. We consider a
reaction of the first order; the temperature dependence of the
reaction rate is given by the Arrhenius law with the activa-
tion energyE and the constant of time dimensiontR . The
stress tensor and the energy diffusion vector are given by the
formulas

t i j5m
]ui
]xj

1m
]uj
]xi

2
2

3
md i j

]uk
]xk

, ~8!

qi5CP

m

Pr

]T

]xi
1Q

m

Sc

]Y

]xi
, ~9!

where Pr is the Prandtl number and Sc is the Schmidt num-
ber ~their ratio gives the Lewis number Le5Pr/Sc). We take
the gas mixture under consideration to be a perfect gas of
molecular weightm unaffected by reaction, so that the equa-
tion of state is

P5
R

m
rT, ~10!

whereR'8.3 J/~deg mol! is a gas constant.
The flame is assumed to propagate in a tube of widthD

with ideally adiabatic and slip conditions at the walls

ux50, uzÞ0,
]T

]x
50, at x50,D. ~11!

We choose the axisz directed along the tube wall and the
axis x perpendicular to the walls. An infinite length of the
tube is assumed which is achieved in simulations by an ap-
propriate choice of the computational intervals.

The initial temperature of the fuel isT5300 K and the
pressure isP5105 Pa. The viscosity coefficient of the fuel
is m51.731023N s/m2, with the molecular weight being
m52.931023 kg/mol and the specific heatCP57R/3m.
The velocity of a planar stationary flameuf is determined by
the chosen values of the chemical parameters of the fuelE,
Q, tR . We are interested in the dynamics of the flames with
the velocitiesuf much less than the sound speedcs . For this
reason we adjusted parameters of the fuel in such a way that
the Mach number isM5uf /cs50.01!1.

To investigate the development of the LD instability with-
out influence of the thermal-diffusion instability we keep al-
ways Le5Pr/Sc51. In most of the calculations we take
Pr5Sc50.3, still the influence of viscosity on the dynamics
of a curved flame~different Prandtl numbers! is also inves-
tigated. The main parameters of the simulations are the tube
width and the expansion coefficient defined as the ratio of

densities of the fuel and the burnt gas:Q5r f /rb . For the
case of subsonic flames the flow is isobaric within the accu-
racyM2,,1, so that the expansion coefficient is equal to
the ratio of temperatures of the fuel and the burning products
Q5Tb /Tf . For this reason the expansion coefficient may be
governed by alteration of the energy release in the reaction
Q511Q/CPTf . For given chemical parameters of the fuel
the expected velocity of a planar stationary flame has been
calculated by the method used in@10#. When the velocity of
a planar flame is known, the thickness of the flame front can
be estimated by the formula

L5
m

Prr fuf
. ~12!

Another parameter of our simulations is the activation en-
ergy of the reaction. For most of the laboratory flames the
activation energy is quite largeE/RTb510220. However, a
large activation energy implies a narrow zone of chemical
reactions LR compared to the total flame thickness
LR'LRTb /E!L , which in turn requires the fine gridding to
resolve the reaction zone. By this reason we choose moderate
values of the activation energy to spread the reaction zone
over 7–10 computational cells. For the flames with expan-
sion coefficientsQ55,7,10 we chose the activation energy
E/RTb55. For the flames with smaller expansion coeffi-
cients it is necessary to take larger values of activation en-
ergy to avoid the undesirable effect of spontaneous reaction
ahead of the flame front@1#. For example, we take
E/RTb57 for the flame with the expansion coefficient
Q53. Luckily, development of the LD instability for the
case of the Lewis number equal to unity is not sensitive to
the value of the activation energy@1,10#. That’s why the
choice of moderate values of the activation energy makes no
restrictions on the obtained physical results.

III. THE NUMERICAL SCHEME

We have performed the numerical simulations using a 2D
hydrodynamic Eulerian code which accounts for chemical
reactions. The code is based on the cell-centered finite-
volume scheme. This numerical method appears to be quite
effective when used to model different kinds of complex
hydrodynamic flows@20,24–27#.

To construct the cell-centered finite-volume scheme any
equation of the system~4!–~7! should be rewritten in the
form of the conservation law

]G

]t
1

]EG

]x
1

]FG

]z
5HG , ~13!

where G stands for any of the variablesr, rux , ruz ,
re1(1/2)r(ux

21uz
2), rY; EG , andFG stand for the corre-

sponding fluxes andHG gives a source term. The cell-
centered finite-volume spatial discretization is obtained by
integrating the conservation law in the form~13! over a
given grid cell. As an example, we present here the result of
integration for an interior cell with indicesi , j . We assume
that purely integer indices (i , j ) denote a grid cell, mixed
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fractional-integer indices denote the cell walls and purely
fractional indices denote the grid nodes. Within this notation
we have

d

dt
Ḡi , j1~EG! i11/2,j2~EG! i21/2,j1~FG! i , j11/22~FG! i , j21/2

5~H̄G! i , j , ~14!

where

Ḡi , j5
1

a i , j
E

V i , j

GdS,~H̄G! i , j5
1

a i , j
E

V i , j

HdS,

a i , j5E
V i , j

dS, ~EG! i11/2,j5E
Bi11/2,j

~EGnx1FGnz!dl,

~FG! i , j11/25E
Bi , j11/2

~EGnx1FGnz!dl. ~15!

V i , j is the greed cell (i , j ); Bi11/2,j andBi , j11/2 are the cell
walls between the current cell (i , j ) and the cells (i11,j ) and
( i , j11), respectively;n5(nx ,nz) is the normal to the cor-
responding cell wall.

By choosing the cell averages of the state vectorḠi , j as
the unknowns of the discretized problem and introducing
approximations of the fluxes (ĒG) i11/2,j and (F̄G) i , j11/2 and
the cell averaged source vector (H̄G) i , j11/2 in terms of these
unknowns, we arrive at the final spatial discretization of~13!.

A key feature of the cell-centered finite-volume discreti-
zation of ~13! given by ~14! is the numerical approximation
of the fluxes (ĒG) i11/2,j and (F̄G) i , j11/2 in terms of the cell
averagesḠi , j . The usual approach is to treat the convective
flux approximations and the diffusive flux approximations
separately because of the different nature of these fluxes. For
the convective fluxes we use a characteristic-upwind flux
scheme@28# in which the propagation directions of the vari-
ous characteristic variables control a user-given degree of up
winding. Here it turns out to be advantageous to work with
the hydrodynamical variablesr, ux , uz , P, Y instead of the
conservative variables in the state vectorḠi , j . The numeri-
cal errors introduced by using this approximation are of the
second order in the grid spacing assuming a smooth solution.
For problems where all spatial scales are adequately resolved
in the computational grid, an extremely small amount of up
winding may be used giving an almost centered scheme with
minimal numerical dissipation and dispersion.

Boundary conditions at the tube walls~11! are approxi-
mated in a traditional manner providing an approximation of
the second order in the grid spacing. At the same time one
should pay special attention to the boundary conditions im-
posed at the ends of the tube. Though we are interested in
flame dynamics in a tube of infinite length, a finite compu-
tational domain requires the boundary conditions to be im-
posed at finite displacementsz56Z` instead ofz56`.
Therefore the value ofZ` must be chosen large enough so
that the flow atz56Z` can be treated as uniform. In our
modeling we use an Eulerian resting grid, therefore the un-
burnt matter flows into the calculation domain atz52Z`

and the burnt matter flows out of the domain atz51Z` .

Simulations start from the initial state which corresponds to
the planar flame front in the vicinity ofz50. The size of the
fine mesh in the vicinity ofz50 is adjusted to the structure
of the flame front and the energy release zone. To maintain
the flame front nearz50 on the fine mesh adjusted to the
flame thickness we impose the following boundary condi-
tions on the incoming flow of the unburnt matter at
z52Z` :

T5Tf , r5r f , uz5uf , ux50, Y51. ~16!

Similar boundary conditions for the outgoing uniform flow
of the burnt matter (Y50) follow from the conservation
laws of mass, momentum, and energy. These conditions are
imposed atz51Z` .

To eliminate the influence of the particular value ofZ` on
the results of numerical simulations this value should be
large in comparison with any other length scale. The charac-
teristic length scales of the problem can be estimated from
the linear stability analysis@7, 24#. They are: the flame thick-
nessL, the hydrodynamical length scale, which is about the
tube widthD, and the length scale of vorticity dissipation
behind the flame front

Lm5LFA 1

4Pr2
1~pL/D !21

pGL

QPrD
2

1

2PrG
21

. ~17!

Another restriction on the tube length comes from the re-
quirement to eliminate the chemical-acoustic instability. This
instability arises as a result of the resonant interaction of the
acoustic oscillations in a tube of finite length and the energy
release in the reaction. It was pointed out in@29# that the
chemical-acoustic coupling does not lead to the instability if
a characteristic acoustic timeZ` /cs is large compared to the
characteristic chemical time scaleL/uf . Therefore in order
to suppress the instability the tube length must be chosen
considerably larger thanL/M . In our calculations we use
Z`5500L to satisfy all the restrictions mentioned above.

We use a rectangular grid with the grid walls parallel to
the coordinate axis. When choosing the grid step we take
into account the characteristic scales of the flow under con-
sideration. The characteristic length scale along thex axis is
the distanceD between the walls. Therefore along thex axis
the grid is uniform with the grid stepdx5D/Nx , with
Nx516 forD,lm/2 andNx532 forD.lm/2 ~the last case
corresponds to the situation when perturbations with the
wavelengthsl52D and l5D are both unstable!. To per-
form all the calculations in a reasonable time we use a non-
uniform grid along thez axis: the space step of the grid is
constant~aboutL/10) in the area26L,z,6L, where the
flame front is maintained and the grid step gradually grows
outside the area with 18% change in size between adjacent
cells, as recommended in@30#.

To avoid spurious reflections from the artificial bound-
ariesz56Z` the boundary conditions were used in the form
of a far-field dumping operator, analogous to@31#. The
boundary conditions are based on the characteristic variables
and the characteristic speeds normal to the boundary. A local
linearization of the governing equations in the form~13! was
done to obtain a linear advection problem normal to the
boundaries atz56Z` :
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]G

]t
1JF

]G

]z
50, ~18!

where JF5]FG /]G is the Jacobian of the flux vectorFG
with respect to the solution vectorG. As is seen, the bound-
ary conditions~18! include only the direction normal to the
boundary, which means that only disturbances in the form of
a planar wave traveling in the direction normal to the bound-
ary are present. Equation~18! may be transformed into a set
of scalar equations in the form

]Wn

]t
1lJ,n

]Wn

]z
50, ~19!

wherelJ,n is then th eigenvalue of the matrixJF , Wn is the
n th component of the vectorW5TJ

21G andTJ is the diago-
nalizing matrix: TJ

21JFTJ5diag(lJ,1 ,lJ,2 . . . ). Equation
~19! expresses the transfer of each characteristic variable
Wn by the flow with the characteristic speedlJ,n . Then the
sign of the characteristic speed determines if the correspond-
ing characteristic variable is traveling out of the calculation
domain or into the domain. The principle we used serves to
impose the boundary conditions~16! only on those charac-
teristic variables that travel into the domain and to extrapo-
late ~from the interior! those that travel out of the domain.
This way of treating the boundary conditions atz56Z`

results in complete suppression of spurious reflected sound
waves, which present in a numerical modeling if the special
precautions are not applied.

IV. SIMULATIONS OF A PLANAR FLAME
AND THE LINEAR STAGE

OF THE LANDAU-DARRIEUS INSTABILITY

The numerical code has been tested on well known solu-
tions of the problems of flame dynamics and stability. Par-
ticularly, it was verified whether the numerical simulation
reproduces properly propagation of a planar stationary flame
front and the linear stage of the LD instability.

To study propagation of a planar flame the analytical so-
lution obtained by Zel’dovich and Frank-Kamenetskii@1#
was chosen as an initial state. In the coordinate system co-
moving with the flame front the solution can be written in the
form

T5H Tf1Tf~Q21!exp~z/L !, z,0

T5QTf , z.0
~20!

uz /uf5r f /r5T/Tf , Y5
Q2T/Tf

Q21
, ~21!

P5H Pf1~ 4
3Pr21!~Q21!r fuf

2exp~z/L !, z,0

Pf2~Q21!r fuf
2 , z.0 .

~22!

The starting estimate for the velocity of the planar stationary
flame is given by the formula

uZF5S m

Prr ftRL D 1/2, ~23!

where

L5
E2~Q21!2

2R2Tf
2Q3 exp~E/QRTf !. ~24!

The important feature of the analytical solution is the pres-
sure difference between the ends of the tube
@P#5(Q21)r fuf

2 given by Eq.~22!. This pressure differ-
ence was taken as initial boundary conditions at the ends of
the tube. After a time interval comparable to the time neces-
sary for a sound wave to propagate from one end of the tube
to another, the stationary flow was formed. The flow corre-
sponded to a planar flame front propagating with a constant
velocity uf respective to the fuel. The real velocity of the
flameuf was slightly different from the estimateuZF given
by Eq.~23!, and therefore in the laboratory reference frame
the stationary flame front moved with a small speed
uf2uZF . For this reason the pressure difference@P# was
adjusted until a steady front at rest in the laboratory reference
frame ~relative to the grid! was obtained in simulations. In
this reference frame the fresh fuel flows towards the flame
front with the velocityuf . Inside the flame front the fuel
burns and the gas temperature increases to the final value.
The burnt products are drifted away from the flame front in
the downstream flow. The resulting profiles of temperature,
pressure, and reaction rate for the stationary flame front with
the expansion coefficientQ55 are presented in Fig. 2. A
very good agreement of the simulations and the solution of
the eigenvalue problem for a planar flame front@10# is seen
in Fig. 2: curve 1 shows solution of the eigenvalue problem
for the temperature of a planar flame front@10#, the markers
give the result of the numerical simulation. The pressure
jump is seen on curve 2 for the scaled pressure. At the same
time we would like to emphasize that the absolute value of
the pressure jump is negligible@P#/Pf55.331024, which is
aboutM2.

Another test of the numerical code was simulation of the
linear stage of the LD instability for a planar flame front. The
velocity componentuz of the obtained stationary solution for
a planar flame front was perturbed asuz(z)→uz(z)
1ũ0(z,x), where

FIG. 2. Profiles of the hydrodynamical variables for a planar
flame front with the expansion coefficientQ55. Curve 1 corre-
sponds to the scaled temperature (T2Tf)/(Tb2Tf), the solid line
gives the solution of the eigenvalue problem@10#, and the markers
show the result of numerical simulation~mesh points!; curve 2 cor-
responds to the scaled pressure (P2Pb)/(Pf2Pb); curve 3 corre-
sponds to the reaction rate scaled by it’s maximal value.
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ũ0~z,x!5uz~z!A0cos~px/D !expS 2
p2~z2z0!

2

D2 D .
~25!

The initial dimensionless perturbation amplitude was taken
A051024 and the maximum of the initial perturbations was
chosen at the pointz0 in the reaction zone, where tempera-
ture differs slightly from the final value
T5Tb(12RTb /E). The velocity perturbation induced per-
turbations in density, temperature, pressure, and concentra-
tion. When the amplitude of the velocity perturbation be-
came ten times larger than the initial amplitudeA0 ~at the
time instant t0) all perturbations developed in accordance
with the eigenmode of the solution of the eigenvalue prob-
lem @10#. The time evolution of temperature perturbations for
a flame front with the expansion coefficientQ55 in a tube
of width D5lc is shown in Fig. 3. All perturbations have a
well pronounced maximum. The temperature perturbations
as well as density and concentration perturbations are local-
ized around the flame front on the length scale of about flame
thicknessL. The perturbations of velocity and pressure are
spread on the hydrodynamical length scales of about tube
width D and larger, as was discussed in the preceding sec-
tion. The amplitudes of all perturbations were measured by
the ratio of the perturbation maximum to the value of this
maximum at the time instantt0 . For example, the amplitude
of temperature perturbations was measured as

AT~ t !5
maxz@ T̃~z,t !cos~px/D !#

maxz@ T̃~z,t0!cos~px/D !#
. ~26!

In agreement with the linear theory all perturbations grew
exponentially with the same instability growth rate, so that
the equality

lnAT~ t !5 lnAr~ t !5 lnAuz
~ t !5 lnAux

~ t !5s~ t2t0!,

s5const ~27!

was fulfilled with 0.5% accuracy. The instability growth rate
s obtained from~27! is in good agreement with the predic-

tions of the linear theory@10#. Particularly for the flame front
with the expansion coefficientQ55 and the tube width
D5lc (lc is the cutoff wavelength calculated by solution of
the eigenvalue problem@10#! the theoretically predicted
growth rate iss50.088uf /L, while the numerical simula-
tion gives the growth rates50.084uf /L. The perturbations
grow in agreement with the linear theory until the dimen-
sionless amplitude becomesAT'10. At this time the dimen-
sional amplitudes of perturbations are approximately hun-
dred times smaller than the corresponding values of the
unperturbed flow. On the later stage the nonlinear effects on
the growth of perturbations become noticeable.

V. CURVED FLAME PROPAGATION IN THE CASE
OF ZERO GRAVITY

Dynamics of a curved flame front have been investigated
for different widths of the tube and different values of the
expansion coefficient. One of the main parameters that affect
the propagation regime of a curved flame in a tube is the
ratio of the tube width and the cutoff wavelengthlc . The
exact values of the cutoff wavelength are calculated by the
method used in@10#. Because of the ideal boundary condi-
tions at the walls Eq.~11! the tube widthD determines a half
of the largest possible wavelength of permitted perturbations
l52D/n, n51,2,3, etc. For perturbations of a wavelength
shorter than the cutoff wavelength development of the LD
instability is suppressed by thermal conduction. If a tube is
sufficiently narrowD,lc/2, then all permitted perturbations
belong to the stable part of the dispersion relation Eq.~1!. In
agreement with the theory the numerical simulation demon-
strates that flame evolution in narrow tubesD,lc/2 always
leads to a planar flame front. Even in a case of a rather large
amplitude of imposed initial perturbations (A050.1) the
flame front returned to the planar configuration.

In wider tubes,D.lc/2, the hydrodynamic instability de-

FIG. 4. The temperature of the cellular flame front with the
expansion coefficientQ55 propagating in a tube of width
D52lc .

FIG. 3. Time evolution of the temperature perturbations
T̃/(Tb2Tf) of a flame front with the expansion coefficientQ55 in
a tube of widthD5lc .The curves 1, 2, 3 correspond to the time
uf(t2t0)/L50;9.3;18.6, respectively.

3718 54BYCHKOV, GOLBERG, LIBERMAN, AND ERIKSSON



velops and results in a stationary curved shape of a flame
front. We found that the first harmonic with the wavelength
l5D induces the growth of harmonics with smaller wave-
lengthsl5D/2,D/3, etc., due to the nonlinear interaction.
The amplitudes of all harmonics grow with time until the
final amplitudes corresponding to the stationary curved flame
front to be achieved. The resulting shape of the stationary
curved flame with the expansion coefficientQ55 is shown
in Fig. 4. The numerical simulation confirms the qualitative
idea of a curved flame front composed of cells@11#, which
are separated by cusps pointing to the products of burning.
However, unlike the qualitative picture obtained in@11,13#
on the basis of the model of an infinitely thin flame front, the
cusps in Fig. 4 are smoothed by thermal conduction. The
velocity field for the curved flame front with the expansion
coefficientQ55 is shown in Fig. 5. An interesting phenom-
enon one can observe is the generation of vorticity
v5]ux /]z2]uz /]x behind the curved flame front~Fig. 6!
which is an important feature of the flame dynamics@1#.
Vorticity is produced, at most, close to the cusp points of the
flame front, while near the humps the flow remains irrota-
tional. The produced vorticity is drifted by the downstream
flow and dissipates because of the viscous effects, so that the
flow at the exit of the tube is uniform again.

A curved flame front propagates with the velocityuw
larger than the corresponding velocity of a planar flame
front. The velocity of a curved flame was calculated as

uw5
r fu12rbu2

r f2rb
, ~28!

whereu1 is the fuel velocity at the entrance of the tube and
u2 is the velocity of the products of burning at the tube exit.
Dependence of the velocity of a curved flame front on the
tube width was investigated for different expansion coeffi-
cients. For any expansion coefficientQ the calculated veloci-
ties of the curved flames in tubes of different widthsDwith a
very good accuracy may be described by the formula

uw5uf14@Um~Q!2uf #
lc

2D S 12
lc

2D D , ~29!

whereUm(Q) is the maximal velocity depending upon the
expansion coefficient. The calculated velocity of a curved
flame is plotted in Fig. 7 versus the inverse tube width for the
expansion coefficientsQ55 ~curve 1! andQ53 ~curve 2!.
The solid lines correspond to the formula Eq.~29! with the
coefficientsUm andlc providing the best fit of the numerical
results. The cutoff wavelengthslc calculated in such a way
agree well with the cutoff wavelengths found from the solu-
tion of the eigenvalue problem@10#. The obtained depen-
dence of the velocity of a curved flame upon the tube width
is similar to the first parabola piece in Fig. 1 representing the
analytical solution for the velocity of a stationary cellular
flame front with a small expansion coefficientQ21,,1.
The velocity maximumuw5Um(Q) is achieved for the tube
width D5lc .Because of the ideal boundary conditions Eq.

FIG. 5. The velocity field for a curved flame front with the
expansion coefficientQ55 obtained in numerical simulations for a
tube widthD52lc . The solid line shows the isothermT5400 K.

FIG. 6. The scaled vorticityvL/uf behind the curved flame
front with the expansion coefficientQ55 propagating in a tube of
width D52lc .

FIG. 7. The scaled velocity of a curved stationary flame
uw /uf21 with the expansion coefficientsQ55 ~curve 1! and
Q53 ~curve 2! vs the inverse tube widthlc/2D.The markers cor-
respond to the results of the numerical simulation; the solid lines
give the best analytical fit in the form of Eq.~29!.
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~11! in this case the curved stationary flame results from the
development of the perturbation mode with the wavelength
lm52lc , which is the fastest mode on the linear stage of
the instability according to Eq.~1!.

One of the main characteristics of the dynamics of curved
flames is the dependence of the maximal velocityUm on the
expansion coefficientUm5Um(Q).The maximal velocity of
a curved stationary flame was calculated for the expansion
coefficientsQ53,5,7,10. Results of the numerical simula-
tions are presented in Fig. 8, where the triangles show the
scaled maximal velocityUm /uf21 obtained in the simula-
tions as a function of the expansion coefficientQ. The maxi-
mal velocity of a curved flame may be approximated with a
good accuracy by the analytical formula

Um /uf511
1

2

G2

Q S 11
G2

Q D , ~30!

where the coefficientG appears in the linear theory of the LD
instability Eq.~2!. Curve 1 in Fig. 8 shows the velocity of a
curved flame front according to Eq.~30!. In the limit of a
small expansion coefficientQ21!1 the velocity of a
curved flame Eq.~30! coincides with the analytical theory
@12,19#. The main tendency of the calculated flame velocities
is that the larger the expansion coefficient, the larger the
velocity of a curved flame. This tendency is physically rea-
sonable since larger expansion coefficients imply a stronger
hydrodynamic instability Eq.~1!. Besides, the larger the ex-
pansion coefficient the more the curvature of the flame front
and the larger the length of the curved front. The increase of
the surface of a curved flame frontDw /D is shown in Fig. 8
~curve 2 and the filled circles!. Here

Dw5E
0

DA11S dZTdx D 2dx ~31!

andZT(x) corresponds to the isothermT50.8Tb . As is seen
from Fig. 8, the dependence of the flame velocity and the
length of the flame front upon the expansion coefficientQ
are the same within the accuracy of simulations until

Q,5. For larger expansion coefficients there is no quantita-
tive agreement any more between the increase of the flame
front velocity and the increase of the surface of the flame
front, still a very good correlation remains.

It is worth comparing the obtained velocities with the ana-
lytical estimates@13#, where velocity of a curved stationary
flame of zero thickness has been considered. The direct com-
parison of these results is difficult, since an infinitely thin
stationary flame front is inherently unstable and cannot be
observed in numerical simulations. However, it can be seen
from Fig. 1 that in the limit of small expansion coefficients
the velocity of an infinitely thin stationary flame
(lc /l→0) coincides with the local velocity maximum of
the first parabola piece atl52lc . If we assume that this
feature holds for any expansion coefficient, then comparison
of the obtained results and the results of Ref.@13# becomes
straightforward. The comparison shows that the increase of
the flame velocity due to the curved shape of the front has
been overestimated in Ref.@13#. The difference between the
estimate of@13# and the results obtained in numerical simu-
lations is more pronounced for smaller expansion coeffi-
cients. For example, forQ53 the estimate of the velocity
increase (Um /uf21) proposed in@13# is approximately
twice larger than the velocity increase obtained in numerical
simulations. For larger expansion coefficients the difference
is not so pronounced: for example, forQ510 the estimated
velocity increase isUm /uf21'0.4 according to@13#, while
the numerically obtained valueUm /uf2150.31. Still in
spite of some quantitative disagreement with the obtained
numerical results the estimate@13# predicted qualitatively
correct dependence of the velocity of a curved stationary
flame front upon the expansion coefficient.

The influence of viscosity on the velocity of a curved
flame front was also investigated. All results reported above
were obtained for the Prandtl number Pr50.3. Numerical
simulations of the dynamics of a curved flame front propa-
gating in a fuel of different viscosity (Pr50.1,0.3,1) were
performed for the expansion coefficientQ55 and the tube
width D5lc . The simulations showed that velocities of the
curved stationary flame fronts are independent of viscosity.
The last result can be anticipated if one takes into account
that the perturbation growth on the linear stage of the LD
instability is independent of viscosity@9,32#.

VI. CURVED FLAMES PROPAGATING UPWARDS:
THE EFFECT OF GRAVITY

Propagation of a low speed flame in tubes can be affected
by gravity. It is well known that gravity plays a stabilizing
role for downward propagating flames and it is destabilizing
for upwards propagating flames@1,5,7,32–36#. If the gravity
acceleration is directed opposite to the flame velocity, than
the cold fresh fuel of higher density is supported by the com-
bustion products of lower density, so that the condition for
the Rayleigh-Taylor~RT! instability to develop at the flame
front is fulfilled. For the upward propagating flames the RT
instability at the flame front amplifies the effect of the LD
instability. The value of the dimensionless acceleration
g5gL/uf

2 shows the relative contribution of the RT and LD
instabilities to the perturbation growth rate for upward
propagating flames@32,35#. In Fig. 9 the instability growth

FIG. 8. Increase of the flame velocity and the length of the front
vs the expansion coefficientQ for curved flames propagating in
tubes of the widthD5lc . Filled triangles show the velocity in-
creaseUm /uf21 obtained in the numerical simulations, curve 1
presents the analytical formula Eq.~30!. Curve 2 and filled circles
show the increase of the length of the curved flamesDw /D21.
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rates for the case of an upward propagating flame of the
expansion coefficientQ55 are shown for different values of
the dimensionless accelerationg50;1;3. One can seethat
an increase of the dimensionless acceleration results in an
increase of the instability growth rate and extension of the
interval of possible unstable perturbations. Particularly for
the upward propagating flames the cutoff wavelengthlcg is
diminished in comparison withlc for the case of zero grav-
ity determined by Eq.~3!. The shape of the dispersion curve
changes as well. Unlike the case of zero gravity the wave-
length of the fastest perturbations for an upward propagating
flame is larger than the doubled cutoff wavelength. For this
reason one may expect stronger interaction of modes on the
nonlinear stage of the instability. For long wavelength per-
turbations the instability growth rate of the flame front can
be estimated by the analytical formula@35#

s5s02
1

2
kL

Qufk

~Q11!s01Qufk
F2Q lnQ

Q21
s0

1S Q11

Q21
Q lnQ1Q21DufkG , ~32!

wheres0 is the instability growth rate of an infinitely thin
flame propagating upwards:

s05S Q21

Q11
gk1

Q21Q21

~Q11!2
Quf

2k2D 1/22
Q

Q11
ufk.

~33!

In the case of zero gravity Eq.~32! goes over to the disper-
sion relation for a freely propagating flame Eq.~1!. As is
seen from Fig. 9, the analytical formula Eq.~32! provides a
very good approximation of the instability growth rate for
long wavelength perturbations up to the fastest perturbations
of maximal growth rate. For a sufficiently long perturbation
wavelength or for a large accelerationg/uf

2k@1 the gravity
dominates and the instability growth rate coincides with the
classical expression for the growth rate of the RT instability
at the interface separating two incompressible fluids with the
densities ratioQ

sRT5S Q21

Q11
gkD 1/2. ~34!

Similar to the linear stage of the hydrodynamic instability
of an upward propagating flame, one may expect that for the
case of a large acceleration and a wide tubegD/uf

2@1 the
flame dynamics in tubes resembles in a sense the nonlinear
stage of the RT instability in the classical configuration. The
interesting point is that even in the case of a small accelera-
tion (g!1) the RT instability can strongly influence the
flame propagation in a tube if the tube is sufficiently wide.
The nonlinear stage of the RT instability in the classical
configuration may be described as the stationary rising
bubbles of the light matter and falling spikes of the heavy
matter. In the two-dimensional case an open bubble in a tube
of width D with ideally slippery walls rises with the velocity
@37#

uRT5aS Q21

Q11
2gDD 1/2, ~35!

where the coefficienta has been estimated asa50.220.3.
When the RT instability develops at a flame front the

configuration of falling spikes is no longer possible. The
flame front consumes the falling fuel — the so called ‘‘fire
polishing’’ effect happens. The numerical simulations show
that in the case of a flame in tubes of moderate width the
competition of the bubble formation and the fire polishing
effect results in a curved stationary shape of the flame front.
The flame shape is similar to the shape of a flame in the
absence of gravity, but with larger amplitude and larger front
curvature. The shapes of the curved stationary flames are
shown in Fig. 10 for a flame with the expansion coefficient
Q55 propagating in a tube of widthD5lc for the dimen-
sionless gravitational accelerationsg50,1,3. The curvature
and the length of the flame front increase with the increase of
the gravitational acceleration. Because of the strong correla-
tion of the flame velocity and the length of the flame front,
discussed in the preceding section, a larger gravitational ac-
celeration leads to the larger velocities of curved upward
propagating flames. The velocity of a curved flame with the
expansion coefficientQ55 propagating upwards in a tube of
width D5lc is shown in Fig. 11 versus the dimensionless
gravitational accelerationg5gL/uf

2 . The effect of the ve-
locity increase of the curved flames propagating upwards can
be described as a combined action of the LD and RT insta-
bilities in the form of a simple analytical formula

uw5AuLD2 1uRT
2 5S uLD2 12a2

Q21

Q11
gDD 1/2, ~36!

wherea50.27 anduLD is the velocity of the curved flame
for the case of zero gravity. The empirical formula~36! com-
bines the effects of flame propagation and the bubble rising.
As is seen from Eq.~36! the relative influence of the RT
instability on the flame shape is determined by the dimen-
sionless parametergD/uf

2 . Still we would like to emphasize,
that even for quite large values ofgD/uf

2 the relative in-
crease of the flame velocity is rather moderate, see Fig. 11.
For example, forgD/uf

2560 (g53, D5lc) the velocity
increases only by the factor 2.64. The weak effect of gravity

FIG. 9. The scaled instability growth rate of an upward propa-
gating flame with the expansion coefficientQ55 vs the dimension-
less wave numberkL. The curves 1, 2, 3 correspond to the dimen-
sionless accelerationsgL/uf

250,1,3.The dashed lines show the
instability growth rate calculated from Eq.~32!.

54 3721PROPAGATION OF CURVED STATIONARY FLAMES IN TUBES



may be attributed to the small numerical factora2which ap-
pears in the theory of bubble motion, see Eq.~35!.

Unlike the flames without gravity, the velocity of a curved
flame propagating upwards in tubes increases with the in-
crease of the tube width even forD.lc . Dependence of the
flame velocity on the inverse tube width is shown in Fig. 12
for a curved flame with the expansion coefficientQ55
propagating in a gravitational field with the dimensionless
accelerationsg50;0.1;1. The effect of gravity is especially
interesting in the case of a small dimensionless acceleration
g50.1. For the tubes of moderate widthD,lc the flame
velocities in the cases of zero and small accelerations are
quite close. However, for wider tubesD.lc the increase of
the flame velocity for the upward propagating flames is con-
siderably larger even for the case of a small acceleration
g50.1. For the case of a large accelerationg51 the differ-
ence between the cases of zero and nonzero gravity becomes
much more pronounced. As is seen from Fig. 12, the con-
figuration of a curved upward propagating flame is possible
for much narrower tubes compared to the case of zero grav-
ity lc/2.D.lcg/2. For sufficiently narrow tubes the
growth rate of both the RT and LD instabilities is strongly
reduced or even suppressed by thermal conduction, see Fig.
9. For such tubes the shape of a curved flame differs only
slightly from a planar one and the flame velocity is close to
the velocity of a planar flame front. For slightly curved
flames the similarity between the flame dynamics and the
‘‘bubble’’ rising breaks down. For this reason Eq.~36! is not
applicable for flames in narrow tubes, when the hydrody-
namic instabilities are almost suppressed by thermal conduc-
tion, see Fig. 12. At the same time Figs. 11, 12 demonstrate
that for wider tubes the analytical formula Eq.~36! provides
a very good approximation of the velocity of an upward
propagating flame.

An important conclusion follows from Fig. 11 and Eq.
~36! that the effect of terrestrial gravity on the upward propa-
gating flames is much weaker than is usually assumed@38#.
For example, for the experimental installation used in@34#
with the tube radiusR52.5 cm the gravity is much more
important than the LD instability only for very slow flames
with the velocities less than 20 cm/s such as the flame in the
mixture 6%CH4 1 Air.On the contrary, the effect of gravity
is expected to be small even for flames of the moderate ve-
locities, like a flame in the mixture 7.7%C2H4O1 Air
(uf570 cm/s). Finally, for the case of fast hydrogen-
oxygen flames with the velocities up to 1000 cm/s the influ-
ence of gravity on the flame velocity is negligible~less than
0.1%!. Unlike the laboratory flames the effect of gravity is
critical for flames in astrophysics, such as the thermonuclear
reaction front in Supernova events@36,39–42#.

VII. DISCUSSION

In the present paper we studied formation and stationary
propagation of curved flames in tubes. The maximal velocity
of a curved stationary flame in the absence of gravity is
obtained for the flame propagating in a tube of widthlc
which allows the growth of the fastest perturbations on the
linear stage of the LD instability. The analytical formula for
the velocity of a curved flame is proposed. One of the im-
portant results of the simulations is that development of the
LD instability on the length scales comparable to the cutoff
wavelength leads to a moderate increase of the flame veloc-
ity. The velocity is not doubled as was expected earlier on
the basis of the study of model equations see, for example,
@14#. Even for the flames with a large expansion coefficient
Q510 the flame velocity increases only by 30%. A much
larger increase of the flame velocity is expected for a flame

FIG. 10. The isotherms~temperature is given in K! of the curved stationary flames with the expansion coefficientQ55 propagating
upwards in a tube of widthD5lc for the dimensionless accelerations~a! gL/uf

250, ~b! gL/uf
251, ~c! gL/uf

253.
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front with a well pronounced fractal structure@15,18#, when
the LD instability develops on a length scale exceeding the
cutoff wavelength by several orders of magnitude. In this
sense the flame cells obtained in the present numerical simu-
lations may be considered as the first step in the cascade of
cells of different sizes expected for a fractal flame@18#.

The configuration of a curved flame propagating upwards
in a gravitational field was investigated as well. It was ob-
tained that gravity leads to an additional increase of the
flame velocity due to the effect of the rising of the light
‘‘bubble’’ of burning products inherent to the nonlinear stage
of the RT instability. For the case of slow flames and wide
tubes the RT instability becomes the most important effect,
which determines the velocity of a curved flame. The ana-
lytical formula for the velocity of an upward propagating
flame is proposed, which combines the effects of the bubble
rising and the flame propagation. Still it is shown that the

influence of gravity on the flame velocity is much less im-
portant than was generally believed.

In the present paper we studied the dynamics of curved
flames in the two-dimensional case, however, a real physical
situation is, as usual, three dimensional. It is expected that
the three-dimensional geometry leads to an additional in-
crease of the flame velocity, both for the cases of zero and
nonzero gravity.
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